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INTRODUCTION

Seagrass meadows, as flowering marine 
plants, are known for their vital roles in coastal 
environments [Wicaksono et al., 2019]. As part of 
the coastal ecosystem, seagrass makes a signifi-
cant contribution to ocean biological productivity 
[Chayhard et al., 2018]. Along with mangroves 
and marsh plants, seagrass stores about 30% of 
the ocean’s total NPP, with carbon being buried 
in the sediment [Duarte & Cebrián, 1996]. Addi-
tionally, they also offer feeding grounds, habitats, 
and nurseries for fish and other marine organisms 

[Riani et al., 2012]. Some species of seagrass are 
also found to have the ability to store carbon, for 
example, Enhalus acoroides, whose underground 
root systems are good for long-term carbon se-
questration [Wicaksono et al., 2019]. In Indone-
sia, seagrass can be found in numerous locations, 
including Bali Island. Seagrass in Bali is distrib-
uted around the island, from the West Bali Na-
tional Park Area to Sanur Beach in the south. Ac-
cording to Sudiarta and Sudiarta [2011], the area 
of seagrass on the Bali coast is approximately 
1316 ha.  Although seagrass has shown many vital 
functions for the ocean and coastal ecosystems, 
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its sustainability is under alarming threat from 
both the natural causes and the anthropogenic 
pressures caused by economic development and 
the growing of population [Knudby & Nordlund, 
2011]. Seagrass decline in Indonesia has been re-
ported in numerous places, such as Banten, Ka-
limantan, and Sulawesi, with the cause still un-
known [Riani et al., 2012]. It is likely to be the 
result of climate change or anthropogenic activi-
ties in the coastal area. Marine tourism, as one of 
the anthropogenic activities that take place near 
the seagrass meadows, can be a pressure for the 
underwater plants. According to Sondak & Ka-
ligis [2022], tourism activities such as anchoring, 
mooring, gleaning, and the use of boat propellers 
can increase the risk of seagrass degradation and 
species loss. Bali has a high number of marine 
tourism activities, such as water sports, which in-
clude boating. This could be threatening because 
the locations of the activities are typically close to 
the seagrass meadows.

The ongoing decline of seagrass prompts 
more studies to find the distribution of seagrass 
around Indonesia, particularly in Bali. Under-
standing seagrass distribution is important given 
that they can function as anthropogenic imbal-
ance indicators, therefore the information may 
provide information that is useful for their con-
servation [Knudby & Nordlund, 2011]. Tradition-
ally, assessment of seagrass spatial distribution is 
carried out with field surveys and observations. 
However, a recent study conducted in North Bali 
has highlighted the limitations and challenges of 
traditional research methods, mainly due to ad-
verse weather conditions and a shortage of neces-
sary tools [Rosalina et al., 2022]. In response to 
these issues, remote sensing techniques are being 
employed due to their high accuracy when detect-
ing seagrass distribution [Yang & Huang, 2011]. 
A study by Lazuardi et al. [2021] used images de-
rived from Sentinel-2A MSI for the mapping of 
benthic habitat in Gili Sumber Kima, Bali, Indo-
nesia and they classified seagrass cover with great 
accuracy, approximately 70% for the 2015 map 
and 83% for the 2019 map. This suggests that sat-
ellite images may well be utilized as a data source 
to accurately identify objects in the ocean.

However, remote sensing studies on seagrass 
distribution in species classification mapping is 
still lacking in many aspects. For example, most 
remote sensing images derived from satellite 
systems, such as Landsat 8 OLI/TIRS, ASTER, 
or Sentinel-2, typically have a medium spatial 

resolution of 10 to 30 meters [Yang et al., 2020]. 
This resolution may not be sufficient to distin-
guish between different seagrass species, which 
can make species detection and mapping more 
challenging. The low dominance of seagrass spe-
cies also makes identification with remote sens-
ing more challenging due to several issues, such 
as the requirement of high spatial resolution with 
a small scale of pixel size to map specific strips of 
seagrass and the low variability between the spe-
cies classes compared to the cover classes [Phinn 
et al., 2008; Lyons et al., 2011].

Furthermore, remote sensing with satellites is 
unable to capture the damage to seagrass mead-
ows caused by anthropogenic activities since the 
acquisition and analysis of the images take a long 
time, whereas the threats must be monitored fre-
quently [Oguslu et al., 2018]. For instance, an-
choring and the use of boat propellers in marine 
tourism leave scars when the boat propeller hits 
the sediment or the submerged vegetation [Li, 
2018]. The scars can be the cause of seagrass habi-
tat loss and degradation because the boat propeller 
forms line channels by excavating the sediments 
[Hallac et al., 2012]. By doing so, the burial of 
seagrass can increase the likelihood of mortality 
and reduce its capacity to recover from declines.

To overcome the limitations, such as the me-
dium spatial resolution of Landsat 8 OLI/TIRS, 
ASTER, and Sentinel-2, we need finer spatial 
resolution from remote sensing imagery. Accord-
ing to Dekker et al. [2006], remote sensing with 
a high spatial resolution sensor is recommended 
because it can distinguish the small and narrow 
seagrass beds that are common in estuary areas. 
Some satellites with high spatial resolution are 
Quickbird-2 (2.4×2.4 m), IKONOS (4×4 m), 
and WorldView-2 (2.4×2.4 m) [Roelfsema et al., 
2014]. However, even satellites with finer resolu-
tion also have their disadvantages. As an example, 
WorldView-2 makes it difficult to acquire images 
under certain conditions, such as high tide and 
sun glint [O’Neill et al., 2013]. Another drawback 
of using high-resolution satellite imagery data for 
site mapping is the prohibitively expensive cost 
[Nahirnick et al., 2019]. Overcoming those situ-
ations can be done by utilizing another type of 
airborne, namely the UAV or drone.

UAV (unmanned aerial vehicle) can be an 
alternative tool for remote sensing imagery with 
their capacity to acquire images at a very fine 
spatial resolution (0–5 cm), greater flexibility, 
and lower operational costs [Nahirnick et al., 
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2019]. While cloud coverage can be an obstacle 
for satellite remote sensing, UAVs are still able 
to provide images with sharper and better quality 
because they are carried out at altitudes under the 
clouds [Riniatsih et al., 2021]. Another disadvan-
tage of satellite remote sensing is their infrequent 
temporal revisit cycle, whereas anthropogenic 
threats must be monitored consistently. While 
some of the satellites collect data in days inter-
vals (e.g., Landsat ETM+ with a 16-day intervals 
[Théau, 2008]), UAV imagery can be collected on 
any day with good weather and low tides, provid-
ing the data on-demand [Yang et al., 2020]. With 
their spatial resolution up to centimeter scale, 
UAVs also can taxonomically identify seagrass or 
other marine organisms and vegetation [Román 
et al., 2021]. This makes UAVs a powerful alter-
native tool in seagrass distribution mapping. De-
spite their high spatial and temporal resolution, 
UAVs still have some limitations. According to 
Nahirnick et al. [2019], mapping and monitoring 
underwater vegetations with UAV must be car-
ried out in clear shallow water and within a small 
area of seagrass beds. Meanwhile, remote sensing 
with satellites can be applied to a larger area.

Tanjung Benoa is a coastal area in Bali where 
seagrass meadows can be found. This location is 
known for its marine tourism activities. As an ur-
ban estuary, Tanjung Benoa is heavily influenced 
by anthropogenic activities from the surround-
ing area [Suteja et al., 2021]. The activities can 
be harmful to seagrass, especially those with boat 
propellers involved. A better understanding of 
seagrass distribution and species identification is 
required to improve seagrass meadow monitoring 
in Tanjung Benoa. The study can be conducted 
by utilizing UAV or drones as remote sensing 
tools to acquire images of the seagrass. UAVs are 
preferred over high-resolution satellites because 
they give even finer resolution, up to a centime-
ter scale. Previously, similar research on shallow 
water mapping was done at another location in 
Bali. Karang et al. [2022] used the Sentinel-2B 
satellite to map the shallow water benthic habitat 
in Nusa Lembongan, while Indayani et al. [2020] 
studied the absorption and reflectance features of 
seagrass leaf conditions as well as the location of 
the spectral channel. There is also a study with 
images derived from a high-spatial resolution sat-
ellites, Wolrdview-3, but the overall accuracy that 
lies between 62.72% and 73.00% was not statisti-
cally significant [Ginting et al., 2023]. However, 
those approaches are still unable to distinguish 

different species of seagrass and other submerged 
aquatic vegetation. Therefore, the goal of this 
study is to map seagrass distribution in Tanjung 
Benoa at the species level as well as evaluate the 
impacts of anthropogenic activities on the sea-
grass meadows.

MATERIALS AND METHODS

Study site

The study site of this research is located at 
Samuh Beach, Tanjung Benoa, Bali, as illustrated 
in Fig. 1. Samuh Beach was selected due to the 
massive anthropogenic activities, such as marine 
tourism (including water sports), that take place 
there. Aside from its function as a tourist desti-
nation, there are also several traditional fishing 
boats harbored at Samuh Beach [Watiniasih et al., 
2019]. This makes the location suitable for detect-
ing scars left by boat propellers with UAV utiliza-
tion. Moreover, a study by Karang et al. [2019] 
discovered that the seagrass coverage at Samuh 
Beach is more prevalent than other benthic habi-
tat classes. Therefore, mapping the distribution of 
seagrass species is feasible at this location. Data 
from the UAV was acquired during August-Sep-
tember 2020. Field observations were also carried 
out to validate the obtained data, as shown in Fig. 
1, encompassing a total of 1278 observed points. 
The observed data included information on coor-
dinates and species identification. These data will 
be utilized for input classification (50%) and ac-
curacy testing (50%).

Data description

Recorded area, flight path, flight altitude, and 
ground sample distance (GSD) were determined 
prior to the UAV flights as part of preparations. 
GSD was measured according to the Eq. (1).

1

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐻𝐻𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝑃𝑃𝑆𝑆𝑃𝑃 (1)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎 (%) = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1

𝑛𝑛 × 100 (2)

𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑂𝑂 𝑂𝑂′𝑠𝑠 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑗𝑗 (%) = 𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛+𝑗𝑗

× 100 (3)

𝑈𝑈𝑠𝑠𝑂𝑂𝑂𝑂′𝑠𝑠𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑖𝑖 (%) = 𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖+

× 100 (4)

𝐾𝐾 = 𝐿𝐿 ∑ 𝑚𝑚𝑖𝑖,𝑖𝑖
𝑛𝑛
𝑖𝑖=1 −∑ (𝐹𝐹𝑖𝑖𝐹𝐹𝑖𝑖 )𝑛𝑛

𝑖𝑖=1
𝐿𝐿2 −∑ (𝐹𝐹𝑖𝑖 𝐹𝐹𝑖𝑖)𝑛𝑛

𝑖𝑖=1
(5)

(1)

In this study, a UAV was flown at a height 
of 30 meters with a camera that had a width of 
3.57 mm and a pixel size of 1.56 mm. The GSD 
measurement was calculated to be 1.31 cm. To 
avoid surface water reflection issues, UAV flights 
were conducted in the morning (8-9 AM) and af-
ternoon (4–5 PM), as recommended by Chayhard 
et al [2018]. Weather conditions, wind speed, and 
sun altitude were all considered before launching 
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the UAV. A speed of 2 m·s-1 was used, with front 
lap and side lap set to 80% to optimize the con-
necting process of the resulting images. Increas-
ing the front ap and side lap improves the quality 
of the resulting mosaics and digital surface mod-
els, as described by Joyce et al [2018]. The result-
ing mosaic is then displayed RGB.

Prior to proceeding with subsequent analysis, 
a meticulous image selection process was under-
taken, involving the careful inclusion and exclu-
sion of images based on specific criteria. These 
criteria included being tilted at an angle greater or 
less than 90 degrees, blurry, or accidentally cap-
turing the drone’s antenna. The obtained images 
were then processed through image mosaicking 
and seagrass species classification. During im-
age mosaicking, Agisoft Metashape software was 
used to provide seamless merging of various im-
ages into a single coherent unit. Following the 

approach by Xiaoxia et al. [2004], the seagrass 
species classification was performed in two steps: 
multiresolution segmentation and knowledge-
based classification of the segments.

Drone-Sruveyed RGB Mosaics

The first process in image mosaicking con-
sists of two initial steps: aligning pictures and 
matching the points across the pictures. From this 
process, a 3D model and sparse point clouds are 
obtained. Those two products are used to gener-
ate dense clouds. In order to distinguish the eleva-
tion of the terrain and land surface, higher and 
lower points are segregated, facilitating the cre-
ation of a Digital Terrain Model (DTM) from the 
Digital Surface Model (DSM). After that, dense 
clouds are used to build a mesh. This step helps 
repair the hollow surfaces caused by uneven light 

Figure 1. Overlay of research location with field data points. The white ring 
markers indicate the observation points, totaling 1278 samples
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exposure in certain parts of the images. Building 
a mesh was performed using Triangular Irregular 
Networks (TIN) data model approach. By utilizing 
the processed point cloud model and dense mesh, a 
Digital Elevation Model (DEM) is generated. This 
DEM is used to create the orthomosaic, which is 
important to create an accurate visualization as 
well as assess the entire study. After successfully 
completing the DEM creation process, the output 
can be exported and projected onto a different geo-
graphic coordinate system. As the final step, all the 
images are mosaicked into a single orthomosaic 
and processed further using eCognition software 
[adapted from Ahmed et al., 2020; Bao et al., 2019; 
Wang et al., 2021; Zhang et al., 2018].

Object-based image classi�cation 

For seagrass species classification, this study 
applied the Geographic Object Based Image 
Analysis (GEOBIA) approach. According to Na-
hirnick et al. [2019], this method can classify and 
identify seagrass species based on their visual 
characteristics, such as textures, colors, shapes, 
and distance from other objects. The first step in 
performing GEOBIA is image segmentation. Im-
ages are divided into several objects based on their 
pixel-character similarity. This process used  mul-
tiresolution segmentation based on region growth. 
During the process, the image parameters such as 
scale, compactness, and shapes are set to 20, 0.3, 
and 0.7, respectively. The next step is segment 
classification using ROI selection, where benthic 
classes were defined into seagrass, seagrass spe-
cies, sand, and reef. The objective of this stage is to 
precisely align chosen segments with the specified 
classes for accurate subsequent classification. The 
objective of this stage is to precisely align chosen 
segments with the specified classes for accurate 
subsequent classification. Upon segment selec-
tion, an essential process of feature adjustment 
is undertaken. This step focuses on the curation 
and refinement of attributes that will be employed 
for classifying segments that extend beyond the 
chosen ROI samples. The selected features were 
classified with the nearest neighbor approach. In 
the final step, the classification results from previ-
ous steps were dissolved and exported as shapefile 
for further processing in QGIS software. The final 
shapefiles containing the study area were calcu-
lated in QGIS software with calculated geometry 
after merging the shapefiles to combine the fea-
tures of two or more images into one.

Analyses

To verify the accuracy of the classification re-
sults, images classified by drones were compared 
to field data. This study employed an accuracy 
assessment that comprised the overall accuracy, 
producer’s accuracy, and user’s accuracy [Con-
galton and Green, 2019]. These metrics were cal-
culated using the Eq.2 – Eq.4.

1

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐻𝐻𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝑃𝑃𝑆𝑆𝑃𝑃 (1)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎 (%) = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1

𝑛𝑛 × 100 (2)

𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑂𝑂 𝑂𝑂′𝑠𝑠 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑗𝑗 (%) = 𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛+𝑗𝑗

× 100 (3)

𝑈𝑈𝑠𝑠𝑂𝑂𝑂𝑂′𝑠𝑠𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑖𝑖 (%) = 𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖+

× 100 (4)

𝐾𝐾 = 𝐿𝐿 ∑ 𝑚𝑚𝑖𝑖,𝑖𝑖
𝑛𝑛
𝑖𝑖=1 −∑ (𝐹𝐹𝑖𝑖𝐹𝐹𝑖𝑖 )𝑛𝑛

𝑖𝑖=1
𝐿𝐿2 −∑ (𝐹𝐹𝑖𝑖 𝐹𝐹𝑖𝑖)𝑛𝑛

𝑖𝑖=1
(5)

(2)

1

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐻𝐻𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝑃𝑃𝑆𝑆𝑃𝑃 (1)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎 (%) = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖
𝑘𝑘
𝑖𝑖=1

𝑛𝑛 × 100 (2)

𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑂𝑂 𝑂𝑂′𝑠𝑠 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑗𝑗 (%) = 𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛+𝑗𝑗

× 100 (3)

𝑈𝑈𝑠𝑠𝑂𝑂𝑂𝑂′𝑠𝑠𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑖𝑖 (%) = 𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖+

× 100 (4)

𝐾𝐾 = 𝐿𝐿 ∑ 𝑚𝑚𝑖𝑖,𝑖𝑖
𝑛𝑛
𝑖𝑖=1 −∑ (𝐹𝐹𝑖𝑖𝐹𝐹𝑖𝑖 )𝑛𝑛

𝑖𝑖=1
𝐿𝐿2 −∑ (𝐹𝐹𝑖𝑖 𝐹𝐹𝑖𝑖)𝑛𝑛

𝑖𝑖=1
(5)

(3)
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where: nii – the total correctly classified test sam-
ples from a class; n – the total accuracy 
test samples; njj – the total reference sites 
correctly classified from a class; n+j – the 
total accuracy test samples from a class;  
ni+ – the total accuracy test samples. Kap-
pa analysis (K) is calculated using Eq. 5.
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where: i – the class number, N – the total number 
of classified values compared to truth val-
ues, mi,i – the number of values belong-
ing to the truth class, i that have also been 
classified as class, i (i.e., values found 
along the diagonal of the confusion ma-
trix), Ci – the total number of predicted 
values belonging to class i, and Gi – the 
total number of truth values belonging to 
class i. The species mapping stages can 
be summarized on the flowchart as illus-
trated by Figure 2.

Scars detection 

The current study aims to evaluate the im-
pacts of anthropogenic activities on seagrass 
beds, particularly the scars generated by boat ac-
tivities involving propellers. The damages caused 
by propellers can be widespread due to their long-
term effects, potentially occurring in any area of 
the estuary and its surrounding regions [Glasby 
and West, 2018]. Samuh Beach, the study area, 
serves as a boat harbor with a significant num-
ber of boats harbored, making it susceptible to 
seagrass bed collapse caused by propeller con-
tact with submerged vegetation and soft bottom 
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sediment, as well as dredging new channels or 
maintaining existing ones [Hallac et al., 2012]. 
A previous study by Li [2018] demonstrated the 
ability to detect scars using an Unmanned Aerial 
System (UAS). A subset image taken by UAS at 
Core Banks barrier islands in Beaufort, New Car-
olina, covering approximately 0.7 square kilome-
ters, provided a zoomed-in depiction of the scars. 
In this study, the identification of scars within 
the seagrass beds was conducted using on-screen 
digitization techniques. A QGIS software was 
employed to display the drone images. Scarring 
criteria were established based on visual charac-
teristics observed in the drone images. Scars were 

identified as areas exhibiting a noticeable reduc-
tion in seagrass density, characterized by disrupt-
ed or absent seagrass blades. The digitized scar 
polygons were spatially analyzed to calculate scar 
area and distribution, including parameters such 
as length, pattern, and width of the coverage area. 

RESULTS AND DISCUSSION

Drone missions were executed, yielding 
a total of 2976 images across sixteen separate 
flights. These images were then organized into 
five distinct stages. The image compilation from 

Figure 2. The flowchart diagram of the research process
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all missions is shown in Figure 3. We have under-
taken the compilation of a comprehensive ortho-
mosaic through the aggregation of 2976 individ-
ual images collected during 16 distinct missions. 
Through a meticulous process of image compila-
tion, we have created a unified representation of 
the seagrass habitat that provides an encompass-
ing view of the study area. This orthomosaic im-
age result is then processed again to obtain the 
finalized image that contains the species classifi-
cation of seagrass. 

The results of image classification are 
displayed in Figure 4. Enhalus acoroides was 
identified as the dominant species, covering an 
area of 11.5 hectares, followed by Thalassia 
hemprichii (6.1 hectares), Cymodocea rotundata
(4 hectares), Syringodium isoetifolium (1.6 
hectares), and Halodule pinifolia (1.5 hectares). 

This seagrass species can be found dominating an 
area of seashore because their shoots tend to grow 
in extension, up to the water surface, making them 
the biggest contributor to the overall reflectance 
among the other species [Wicaksono & Hafizt, 
2013]. In this study, the species are distributed 
from the northern part of Samuh Beach, all 
the way to the southern part. Compared to the 
other species, Enhalus acoroides and Thalassia 
hemprichii distribution are denser, as shown in 
the picture. Some of the species, e.g. Halodule 
pinifolia and Syringodium isoetifolium can be 
seen to be covered by the most dominated species.

According to Wicaksono et al [2019], when 
the leaves of seagrass are stacked and layered, the 
coverage can be overestimated, compared to when 
the leaves are standing. Syringodium isoetifolium
has cylindrical leaves shape that become flexible 

Figure 3. Drone images compilation from all missions
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when current passes through them [Khairunissa 
et al, 2021]. It is possible that they got covered 
by other species during the image recording, 
resulting in the lower coverage. Furthermore, 
Halodule pinifolia which is also the species with 
lowest coverage along with the Syringodium 
isoetifolium, was observed in low density in the 
northern part of Samuh Beach. This aligns with 
Khairunnisa et al. [2021] findings which stated 
that the species flourishes in a stable substrate, 
whereas is unavailable in the beach’s northern 
section. Additionally, some regions near the shore 
had no seagrass, likely due to boat activities that 
involve propellers usually occur at the shoreline, 
which resulted in low seagrass coverage.

The present study’s finding also succesfully 
identified similar seagrass species from research 
of Sari et al [2023] and Karang et al [2019] who 

applied in situ observation to obtain their study data. 
However, this study was unable to identify some 
of other species they found, such as Cymodocea 
serrulata, Halodule uninervis, Halophila ovalis, 
and Thalassodendron ciliatum. Another research 
conducted with drone in Bali, at Ceningan Strait, 
also found similar species of seagrass, e.g. 
Thalassia hemprichii, Syringodium isoetifolium, 
and Cymodocea rotundata [Wijantara et al, 2022]. 
Furthermore, by combining the imagery data with 
machine learning, seagrass distribution identifica-
tion with UAV can be advanced. This combina-
tion was demonstrated by the study of Tahara et 
al. [2022], which used UAV photography and 
deep neural network technique to accurately map 
seagrass beds and distinguish between similar-
looking species. This further suggests that drone-
based methods are comparable to satellite-based 

Figure 4. The result of seagrass species mapping using UAV at Samuh Beach, Bali, Indonesia
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methods for seagrass mapping. Table 1 displays 
the results of the seagrass classification accuracy 
assessment, where the study achieved an overall 
accuracy (OA) of 65% and a Kappa index (K) of 
0.52. The result is similar to the one generated 
by Wijantara et al [2022], with their overall ac-
curacy of 68% and kappa coefficient of 0.55. The 
Kappa index falls within the medium category, 
indicating that the classification was carried out 
well, according to the standards set by Congal-
ton & Green [2008] and LIPI [2014], as cited by 
Karang et al. [2022]. Furthermore, this accuracy 
is significantly higher than that achieved using 
high-resolution satellites, such as WorldView-2 
and WorldView-3, as reported by Azizah et al. 
[2016] and Kumara et al. [2018], respectively. 
The overall accuracy obtained from the study of 
seagrass species classification in Tunda Island, 
Banten by Azizah et al. [2016] only reached 
35.6%, meanwhile similar study by Kumara et 
al. [2018] in Nusa Lembongan has significantly 
lower overall accuracy with 17,11%. This further 
indicates that UAV imagery is capable to achieve 
even better accuracy than the satellite imagery. 
The spatial resolution of 1.31 cm/pixel for the 
drone images used in this study was also superior 
to that of high-resolution satellite imagery, which 
had resolutions of 0.31 m, 0.5 m, and 30 m for 
WorldView-3, WorldView-2, and Landsat 8, re-
spectively. The improved spatial resolution was 
likely the primary factor in the higher accuracy 
achieved in this study.

However, the OA of this study is lower than 
that reported by Nababan et al. [2021], where the 
highest OA values were 77.4% for 12 benthic 
habitat classes and 81.1% for 9 benthic habitat 

classes. Meanwhile this study only used 7 ben-
thic habitat classes. The significant difference in 
OA may be attributed to the use of the support 
vector machine (SVM) algorithm in addition 
to object-based image analysis (OBIA), which 
could improve the accuracy of the results. A re-
port by Zhang and Xie [2013] demonstrated that 
the SVM algorithm can produce better accuracy 
in species-level research. This further indicates 
that the OBIA and SVM combination might be 
explored further in future studies to provide even 
more accurate seagrass mapping results. Addi-
tionally, another study by Tahara et al [2022] also 
showed that combining UAV photography with a 
deep neural network for seagrass species distri-
bution mapping can improve the result accuracy 
compared to conventional methods.

Utilizing UAVs and satellite imagery for 
seagrass distribution and species identification 
studies may be helpful for the conservation and 
management of seagrass beds. This study’s find-
ing demonstrated a promising result of UAV im-
agery in seagrass species classification with high 
accuracy when identifying two species, Enhalus 
acoroides and Halodule pinifolia. High-reso-
lution imagery from the UAV also allows data 
collection to be carried out in remote and chal-
lenging water areas. However, UAV imagery also 
lacks in some aspects. This study highlighted the 
UAV limitations, particularly in seagrass species 
classification, as the data processing resulted in 
some misidentified species. UAV imagery, for 
example, failed to identify Cymodocea rotundata
and Syringodium isoetifolium because both spe-
cies were misclassified as Enhalus acoroides. 
This indicates that UAV imagery is still unable to 

Table 1.  Seagrass species classification accuracy assessment

Specification Enhalus 
acroides

Thalasia 
hemprichii

Cymodocea 
rotundata

Haludule 
pinifolia

Syringodium 
isoetifolium Sand Total UA (%)

Enhalus acroides 209 19 10 2 23 1 264 79.17

Thalasia hemprichi 30 106 3 0 16 3 158 67.09

Cymodocea rotundata 39 20 22 1 5 2 89 24.72

Haludule pinifila 5 1 6 19 2 2 35 54.29
Syringodium 
isoetifolium 10 1 2 1 46 0 60 76.67

Sand 4 0 3 10 2 14 33 42.42

Total 297 147 46 33 94 22 639

PA (%) 70.37 72.11 47.83 57.58 48.94 63.64

Overall Accuracy (OA) in % 65

Chance Agreement (CA) 0.28

Kappa (K) 0.52



170

Journal of Ecological Engineering 2024, 25(1), 161–174

distinguish between those three species. Further-
more, in this study, non-seagrass classification 
was found to have a low accuracy rate, with only 
42% of the Sand class correctly identified. The 
difficulty in distinguishing Halodule pinifolia
from the sand class due to their small leaf shapes 
may have been attributed to this missclassifica-
tion. Nevertheless, this study still highlighted the 
potential of UAV imagery for seagrass species 
classification while also noticing the limitations 
of UAV imagery data processing in distinguish-
ing between seagrass and non-seagrass classes.

Not only that, this study also found that UAV 
imagery can also be utilized to identify the impact 
of tourism activities on seagrass beds at Samuh 
Beach. The UAV imagery were able to detect 
the scars left by boats and other vehicles used in 
marine tourism activities. Those scars were later 
identified as the result of pressure on seagrass 
beds. Figure 5 shows the recorded scars on sea-
grass beds in Samuh Beach.

The scars were found in the form of 
vertical lines, covering the seagrass beds, and 
forming tracks that followed boats’ tracks. They 
covered the seagrass beds at Samuh Beach at 
approximately 0.05 ha and 24.7 ha wide in total, 

with a ratio with overall seagrass coverage of 
1:494. To make it more apparent, the overlay im-
age of the scars on seagrass beds is shown in Fig. 
6. In the image, the scars can be seen covering 
multiple areas of seagrass beds, further indicating 
the threat its possesed.

The scars were denser near the shallow water 
area, especially at the northern part of Samuh 
Beach, where high levels of boat activity are 
observed due to the presence of a harbor. The 
scars were found in several areas, but not in the 
sandy part that is adjacent to the seagrass beds. 
The study also referenced a previous finding by 
Hallac et al. [2012] in Florida Bay, which revealed 
the presence of non-continuous scar lines. It 
indicated that the appearance of scars appearance 
depends on how the water sports are performed. 
Water tourism agency tends to use certain areas 
for each sport, and it causes the seagrass decline 
to be more prevalent in those areas. We suggested 
the area for water sports tourism to be decided 
with greater consideration, by taking into account 
the seagrass recovery and endurance, as well as 
the sea level elevation. In this study, the appli-
cation of UAVs has demonstrated significant ad-
vantages in seagrass research of Samuh Beach. 

Figure 5. Example of scars detection at seagrass beds in Samuh Beach, Bali, Indonesia
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The acquisition of 2976 hig-resolution images 
through sixteen separate flights aalowed for the 
compilation of a detailed orthomosaic, enabling 
comprehensive coverage and mapping of sea-
grass habitats. The high spatial resolution and 
detailed visual data obtained UAVs facilitated 
precise species identification and habitat moni-
toring. Furthermore, the ability to access remote 
or challenging coastal areas provided valuable 
insights into the distribution and condition of sea-
grass beds. However, the study highlights certain 
limitations in UAV-based research. The UAV im-
agery may not provide sufficient taxonomic reso-
lution to accuratey distinguish between different 
seagrass species. A observed in the study, Cymo-
docea rotundata and Syringodium isoetifolium
were misclassified as Enhalus acoroides, indicat-
ing the inability of UAV imagery to distinguish 

these species accurately. Interm of technical is-
sues, weather dependence, battry life and flight 
time, data processing complexity and regulatory 
restrictions were experienced in this seagrass 
study. For example, adverse weather conditions 
can restrict UAV flights, and UAV have limited 
flight time due to battery constraints. As men-
tioned by Nahirnick et al [2019], mapping with 
UAV is advised to be done on a small area of sea-
grass beds. This can be a hurdle to carry out a 
remote sensing study with UAV in a larger area. 
Furthermore, UAV flight also requires optimal 
weather and environmental condition to avoid a 
number of issues, such as sunglint. The quality 
of the aqcuired data can be affected by sunglint, 
because of its visible appearence on the surface of 
the water body [Doukari et al., 2021]. Avoiding 
this problem can be accomplished by flying the 

Figure 6. Overlay of seagrass and scars detection  at Samuh Beach, Bali, Indonesia
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UAV in the morning and afternoon, following the 
recommendation of Chayhard et al [2018].

CONCLUSIONS 

This study represents the first investigation of 
species classification using UAV photography at 
Samuh Beach. Mosaicked images compiled from 
drone missions successfully identified five species 
of seagrass, namely Enhalus acoroides, Halodule 
pinifolia, Thalassia hemprichi, Cymodocea 
rotundata, and Syringodium isoetifolium. This 
study also mapped the results of anthropogenic 
activities that posed a threat to the seagrass. 
Scars discovered on the seagrass bed were likely 
generated by boat propellers passing through the 
area. However, additional research on these scars 
is necessary to gain a better understanding of the 
impact of human activities, particularly marine 
tourism, on the seagrass bed at Samuh Beach.
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